Glutathione S-transferase catalyzed desulfonylation of a sulfonylfuropyridine.
نویسندگان
چکیده
MRL-1, a cannabinoid receptor-1 inverse agonist, was a member of a lead candidate series for the treatment of obesity. In rats, MRL-1 is eliminated mainly via metabolism, followed by excretion of the metabolites into bile. The major metabolite M1, a glutathione conjugate of MRL-1, was isolated and characterized by liquid chromatography/mass spectrometry and NMR spectroscopic methods. The data suggest that the t-butylsulfonyl group at C-2 of furopyridine was displaced by the glutathionyl group. In vitro experiments using rat and monkey liver microsomes in the presence of reduced glutathione (GSH) showed that the formation of M1 was independent of NADPH and molecular oxygen, suggesting that this reaction was not mediated by an oxidative reaction and a glutathione S-transferase (GST) was likely involved in catalyzing this reaction. Furthermore, a rat hepatic GST was capable of catalyzing the conversion of MRL-1 to M1 in the presence of GSH. When a close analog of MRL-1, a p-chlorobenzenesulfonyl furopyridine derivative (MRL-2), was incubated with rat liver microsomes in the presence of GSH, p-chlorobenzene sulfinic acid (M2) was also identified as a product in addition to the expected M1. Based on these data, a mechanism is proposed involving direct nucleophilic addition of GSH to sulfonylfuropyridine, resulting in an unstable adduct that spontaneously decomposes to form M1 and M2.
منابع مشابه
Antioxidant properties and Glutathione S-transferases inhibitory activity of Alchornea cordifolia leaf extract in Acetaminophen toxicity
Paracetamol (acetaminophen, PCM) is a widely used over-the-counter analgesic and antipyretic drug. Intake of a large dose of PCM may result in severe hepatic necrosis. Oxidative stress is mediated by oxidative capacities of the PCM metabolite (N-acetyl-para-benzo quinoneimine, NAPQI), which covalently binds to proteins and other macromolecules to cause cellular damage. At low doses, NAPQI is ...
متن کاملEnzyme-Catalyzed Macrocyclization of Long Unprotected Peptides
A glutathione S-transferase (GST) catalyzed macrocyclization reaction for peptides up to 40 amino acids in length is reported. GST catalyzes the selective S(N)Ar reaction between an N-terminal glutathione (GSH, γ-Glu-Cys-Gly) tag and a C-terminal perfluoroaryl-modified cysteine on the same polypeptide chain. Cyclic peptides ranging from 9 to 24 residues were quantitatively produced within 2 h i...
متن کاملAromatic substitution reaction of 2-chloropyridines catalyzed by microsomal glutathione S-transferase 1.
We investigated the substitution reaction of a series of 2-chloropyridine derivatives catalyzed by rat liver microsomal glutathione S-transferase 1. Various 2-chloropyridine derivatives were metabolized to the corresponding substituted glutathione conjugates via displacement of chlorine atom with glutathione. The reaction was affected by the electron-withdrawing strength and position of the sub...
متن کاملShort Communication Aromatic Substitution Reaction of 2-Chloropyridines Catalyzed by Microsomal Glutathione S-Transferase
We investigated the substitution reaction of a series of 2-chloropyridine derivatives catalyzed by rat liver microsomal glutathione S-transferase 1. Various 2-chloropyridine derivatives were metabolized to the corresponding substituted glutathione conjugates via displacement of chlorine atom with glutathione. The reaction was affected by the electron-withdrawing strength and position of the sub...
متن کاملShort Communication Aromatic Substitution Reaction of 2-Chloropyridines Catalyzed by Microsomal Glutathione S-Transferase
We investigated the substitution reaction of a series of 2-chloropyridine derivatives catalyzed by rat liver microsomal glutathione S-transferase 1. Various 2-chloropyridine derivatives were metabolized to the corresponding substituted glutathione conjugates via displacement of chlorine atom with glutathione. The reaction was affected by the electron-withdrawing strength and position of the sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 38 1 شماره
صفحات -
تاریخ انتشار 2010